One-Step Preparation of α -Chloro- α,β -unsaturated Carbonyl Compounds by the Reaction of Silyl Enol Ethers with TiCl₄-LiAlH₄-CCl₄

Michiharu MITANI* and Yoshinori KOBAYASHI Department of Chemistry and Material Technology, Shinshu University, Wakasato, Nagano 380 (Received July 2, 1993)

Synopsis. Reaction of silyl enol ethers in a system composed of TiCl₄, LiAlH₄, and CCl₄, which generates dichlorocarbene, produced α -chloro- α , β -unsaturated carbonyl compounds in an one-step process.

The reaction of dihalocarbenes with carbonyl equivalent olefins such as silyl enol ethers, $^{1-3)}$ enol ethers, $^{4-6)}$ enol acetate, $^{7,8)}$ and enamines, $^{9,10)}$ gives cyclopropane derivatives that are next converted to carbon-chain homologated α -halo- α , β -unsaturated carbonyl compounds by thermal, acid, or base treatment. These transformations require a two-step procedure that includes isolation of the cyclopropanes. In this investigation, we found a method by which carbon-chain homologated α -chloro- α , β -unsaturated carbonyl compounds are directly formed in one step from silyl enol ethers.

The addition of 1-trimethylsiloxy-1-cyclohexene (1a) and CCl₄ to a suspension of TiCl₄ and LiAlH₄ in THF furnished 2-chloro-2-cyclohepten-1-one (3a). Various silvl enol ethers 1 were reacted under the same conditions to form 3 (Scheme 1). The results are shown in Table 1. The reaction with 1c, which has two bulky substituents (t-butyl and trimethylsiloxy) afforded cyclopropane 2c (54%) as the major product together with the desired product 3c (34%). When ketene silyl acetals from esters were the substrates, the situation became more complicated. The ketene silyl acetal from methyl phenylacetate, 1i, gave the desired product 3i, although the yield was low, but the ketene silyl acetal from ethyl hexanoate, 1j, did not form a carbonchain homologated product but product 4, which has a dichloromethyl group as a pendant (Scheme 2).

TiCl₄ and LiAlH₄ form reduced titanium, which then reacts with CCl₄ to generate dichlorocarbene.^{11,12)} Thus, our method probably involves the intermediary formation of dichlorocyclopropyl silyl ethers **2** by the reaction of silyl enol ethers **1** with dichlorocarbene generated in this reaction system. The sequential conver-

Scheme 1.

Table 1. Preparation of α -Chloro- α , β -unsaturated Carbonyl Compounds 3 from Silyl Enol Ethers 1

	1		3	
	$\overline{R^1}$	R^2	Stereochemistry	Yield/%
a	-(CH ₂) ₄ -		E	71 ^{a)}
b	$-(CH_2)_3-$		$oldsymbol{E}$	$70^{c)}$
c	$C(Me)_3$	H		$34^{\mathrm{a,b})}$
\mathbf{d}	Et	Me	Z	$52^{ m d})$
e	Pr	\mathbf{Et}	Z	63°)
\mathbf{f}	H	$\mathrm{C_5H_{11}}$	Z	$61^{a)}$
\mathbf{g}	Ph	H		75 ^{a)}
h	Ph	\mathbf{Et}	Z	$62^{d)}$
i	OMe	Ph	Z	10 ^{a)}

a) Yields were determined by GC. b) The cyclopropane 2c (54%) was a major product. c) Yields refer to products isolated by Kugelrohr distillation. d) Yields refer to products isolated by preparative TLC.

sion of 2 to 3 under our reaction conditions may be effected by the action of AlCl₃ or TiCl₂ generated in situ that is a Lewis acid, for which two possible pathways including attack upon an oxygen or chlorine atom¹³⁾ as shown in paths a and b of Scheme 3, respectively, may be envisaged. If path b were operative, reaction of the allylsilane 5 instead of 1 in this system could be expected to afford diene 7 (Scheme 4). In fact, dichlorocyclopropane 6 was obtained as the sole product and it was not converted to 7. Thus, it is likely that **3** is formed via path a under these reaction conditions. The production of 2c from 1c also may be evidence for path a. Coordination of the metal chloride on the oxygen atom of 2c in path a may be disturbed because of steric congestion with the bulky t-butyl group, but approach to the chlorine atom in path b is not hindered in this way.

The reaction of ketene silyl acetal 1j afforded 2-dichloromethyl ester 4, which seems to be formed via the bond cleavage of the intermediate cyclopropane at a different position than cleavage of the cyclopropanes from silyl enol ethers 1a—h and ketene silyl acetal 1i. The reason for the unusual bond cleavage of 2j is not known. It might be due to direct attack by the

$$TiCl_{4} + LiAlH_{4} \longrightarrow Ti^{0} + AlCl_{3} + LiCl + 2H_{2}$$

$$CCl_{4}$$

$$CCl_{2}$$

$$Me_{3}SiO$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R$$

Scheme 3.

CH3(CH2)5CH=CHCH2SiMe3

Scheme 4.

metal chloride of the cyclopropane ring, not the oxygen atom, of **2j** to bring about bond cleavage, as suggested by the electrophilic attack by TiCl₄ of the ring of the cyclopropanone silyl acetal to form the titanium homonolate.¹⁴⁾

Experimental

IR spectra were recorded on a Hitachi EPI-G3 spectrometer with samples as neat oils. ¹H and ¹³C NMR spectra were recorded with a JEOL FX60 spectrometer for CDCl₃/CCl₄ solutions with SiMe₄ as the internal standard. Mass spectra were obtained at 70 eV with a Hitachi M-80B instrument.

Materials. Silyl enol ethers 1a—h, ketene silyl acetals 1i, j, and allylsilane 5 were prepared by the methods of House et al., ¹⁵⁾ Ainsworth et al., ¹⁶⁾ and Fleming and Paterson, ¹⁷⁾ respectively.

Treatment of 1 with a System Composed of TiCl₄, LiAlH₄, and CCl₄. TiCl₄ (5.69 g, 30 mmol) was added at a rate that allowed the temperature to remain below 5 °C to THF (40 cm³) being stirred under a nitrogen atmosphere. Then a solution of $LiAlH_4$ (1.14 g, 30 mmol) in THF (25 cm³) was added at a rate that allowed the temperature to remain below 15 °C, and the dark-brown mixture was allowed to warm to 19 °C over a period of 40 min. The flask was cooled again in a salt-ice bath. When the temperature had fallen to 0 °C, 1 (10 mmol) and then CCl_4 (4.29 g, 30 mmol) in THF (15 cm³) were added in this order at a rate that allowed the temperature to remain at 0 °C. After being stirred at 0 °C for 30 min, the reaction mixture was poured into 150 cm³ of cold 6.7% hydrochloric acid in water. The upper organic layer was separated from the aqueous layer. The aqueous layer was extracted with dichloromethane (1×40 cm³, 2×30 cm³). The combined organic layers were washed with 10% aqueous sodium carbonate (25 cm³) and dried over anhydrous MgSO₄. After the solvent was removed under reduced pressure, the residue was separated by GC, preparative TLC, or Kugelrohr distillation.

2-Chloro-2-cyclohepten-1-one (3a): IR 1685 (C=O), 1606 (C=C) cm⁻¹; ¹H NMR δ = 7.29 (t, 1H, J = 6.9 Hz, CH=C), 2.94—2.46 (m, 4H, CH₂CO and CH₂CH=C), 2.07—1.74 (m, 4H, CH₂CH₂); ¹³C NMR δ = 141.61, 41.23, 27.43, 24.75, 20.86; MS m/z 146 (M⁺ + 2; 23), 144 (M⁺; 77), 81 (100). HR-MS, Found: m/z 144.0330 (M⁺). Calcd for C₇H₉OCl: M, 144.0341.

2-Chloro-2-cyclohexen-1-one (3b): IR 1695 (C=O), 1608 (C=C) cm⁻¹; ¹H NMR δ = 7.37 (t, 1H, J = 6.0 Hz, CH=C), 2.80—2.00 (m, 6H, CH₂CH₂CH₂); ¹³C NMR δ = 144.87, 38.20, 26.80, 22.51; MS m/z 132 (M⁺+2; 27), 130 (M⁺; 93), 39 (100). HR-MS, Found: m/z 130.0183 (M⁺). Calcd for C₆H₇OCl: M, 160.0184.

1-t-Butyl-2,2-dichloro-1-trimethylsiloxycyclopropane (2c): 1 H NMR δ =1.83 (d, 1H, J=8.6 Hz, CH₂), 1.73 (d, 1H, J=8.6 Hz, CH₂), 1.17 (s, 9H, CCH₃), 0.19 (s, 9H, SiCH₃); 13 C NMR δ =29.63, 27.78, 1.90; MS m/z256 (M⁺+2; 1,5), 254 (M⁺; 2.5), 73 (100). HR-MS, Found: m/z 219.0992 (M⁺-Cl). Calcd for C₁₀H₂₀OSiCl: M-Cl, 219.0971.

2- Chloro- 4, 4- dimethyl- 1- penten- 3- one (3c): ${}^{1}\mathrm{H}\,\mathrm{NMR}\,\delta{=}6.10$ (d, 1H, $J{=}1.7$ Hz, CH₂=C), 5.83 (d, 1H, $J{=}1.7$ Hz, CH₂=C), 1.29 (s, 9H, CH₃C); MS m/z 148 (M⁺+2; 2.3), 146 (M⁺; 8.0), 41 (100). HR-MS, Found: m/z 146.0477 (M⁺). Calcd for C₇H₁₁OCl: M, 146.0497.

(*Z*)-3-Chloro-2-hexen-4-one (3d): IR 1690 (C=O), 1617 (C=C) cm⁻¹; ¹H NMR δ =7.14 (q, 1H, J=7.2 Hz, CH=C), 2.81 (q, 2H, J=7.4 Hz, CH₂), 2.00 (d, 3H, J=7.2 Hz, CH₃CH=C), 1.14 (t, 3H, J=7.4 Hz, CH₃CH₂); ¹³C NMR δ =133.52, 31.82, 14.72, 7.94; MS m/z 134 (M⁺+2; 36), 132

- (M⁺; 100). HR-MS, Found: m/z 132.0336 (M⁺). Calcd for C_6H_9OCl : M, 132.0340.
- (*Z*)-4-Chloro-3-octen-5-one (3e): IR 1714 (C=O), 1618 (C=C) cm⁻¹; ¹H NMR δ =7.15 (t, 1H, J=7.7 Hz, CH=C), 2.80 (t, 2H, J=7.7 Hz, CH₂CO), 2.46 (app quint, 2H, J=7.7 Hz, CH₂CH=C), 2.07—1.40 (m, 2H, CH₂CH₂), 1.16 (t, 3H, J=7.2 Hz, CH₃CH₃CH₂), 1.00 (t, 3H, J=7.2 Hz, CH₃CH₂CH=C); ¹³C NMR δ =139.85, 40.35, 22.51, 17.30, 13.60, 12.13; MS m/z 162 (M⁺+2; 32), 160 (M⁺; 100). HR-MS, Found: m/z 160.0655 (M⁺). Calcd for C₈H₁₃OCl: M, 160.0654.
- (*Z*)-2-Chloro-2-octen-1-one (3f): IR 1705 (C=O), 1628 (C=C) cm⁻¹; ¹H NMR δ =9.52 (s, 1H, HCO), 6.93 (t, 1H, J=7.2 Hz, CH=C), 2.74—2.32 (m, 2H, CH₂CH=C), 1.87—1.20 (m, 6H, CH₂CH₂), 0.91 (t, 3H, J=6.0 Hz, CH₃); ¹³C NMR δ =183.80, 149.15, 31.29, 29.04, 27.27, 22.20, 13.79; MS m/z 162 (M⁺+2; 0.2), 160 (M⁺; 0.6), 41 (100). HR-MS, Found: m/z 160.0673 (M⁺). Calcd for C₈H₁₃OCl: M, 160.064.
- **2-Chloro-1-phenyl-2-propen-1-one (3g):** IR 3033 (Ph), 1670 (C=O), 1590 (C=C) cm⁻¹; ¹H NMR δ =8.10—7.53 (m, 5H, Ph), 6.33 (d, 1H, J=1.7 Hz, CH₂=C), 6.16 (d, 1H, J=1.7 Hz, CH₂=C); ¹³C NMR δ =132.45, 129.28, 127.96, 124.17; MS m/z 168 (M⁺+2; 8), 166 (M⁺; 22), 105 (100). HR-MS, Found: m/z 166.0173 (M⁺). Calcd for C₉H₇OCl: M, 166.0184.
- (Z)-2-Chloro-1-phenyl-2-penten-1-one (3h): IR 3028 (Ph), 1670 (C=O), 1598 (C=C) cm⁻¹; ¹H NMR δ = 8.26—7.58 (m, 5H, Ph), 6.92 (t, 1H, J=7.7 Hz, CH=C), 2.63 (app quit, 2H, J=7.7 Hz, CH₂), 1.21 (t, 3H, J=7.7 Hz, CH₃); ¹³C NMR δ =144.24, 131.81, 129.09, 127.87, 22.85, 12.18; MS m/z 196 (M⁺ + 2; 35), 194 (M⁺; 100); HR-MS, Found: m/z 194.0485 (M⁺). Calcd for C₁₁H₁₁OCl: M, 194.0497.
- (*Z*)-Methyl 2-chlorocinnamate (3i): IR 3030 (Ph), 1733 (COO), 1614 (C=C) cm⁻¹; ¹H NMR δ =7.67 (s, 1H, CH=C), 7.61 (br s, 5H, Ph), 3.91 (s, 3H, CH₃); ¹³C NMR δ = 136.59, 128.50, 128.20, 127.96, 52.24; MS m/z 198 (M⁺+2; 27), 196 (M⁺; 95), 161 (100). HR-MS, Found: m/z 196.0263 (M⁺). Calcd for C₁₀H₉O₂Cl: M, 196.0237.

Ethyl 2-Dichloromethylhexanoate (4): IR 1739 (COO) cm⁻¹; ¹H NMR δ =6.10 (d, 1H, J=8.6 Hz, CHCl₂), 4.39 (q, 2H, J=7.7 Hz, CH₂O), 3.23—2.84 (m, 1H, CHCO), 1.97—1.20 (m, 6H, CH₂CH₂CH₂), 1.37 (t, 3H, J=7.7 Hz, CH₃CH₂O), 0.97 (t, 3H, J=5.1 Hz, CH₃); ¹³C NMR δ =75.09, 63.15, 62.18, 59.55, 31.43, 24.75, 16.62, 16.23; CI-MS m/z 229 (M⁺+2+H; 63), 227 (M⁺+H; 100). HR-MS, Found: m/z 135.0206 (M⁺ - Cl - C₄H₈). Calcd for

 $C_5H_8O_2Cl: M-Cl-C_4H_8, 135.0212.$

Treatment of 5 with a System Composed of TiCl₄, LiAlH₄, and CCl₄. 1-Trimethylsilyl-2-nonen (5) (1.98 g, 10 mmol) was treated in a reaction system composed of TiCl₄ (5.9 g, 30 mmol), LiAlH₄ (1.14 g, 30 mmol), and CCl₄ (4.29 g, 30 mmol) as for 1. From the residue after work-up, dichlorocyclopropane 6 was isolated by preparative GC as a colorless liquid: ¹H NMR δ=1.80—1.15 (m, 12H), 0.95 (t, 3H, J=4.3 Hz, CH₃CH₂), 0.73—0.50 (m, 2H, CH₂Si), 0.11 (s, 9H, CH₃Si); ¹³C NMR δ=33.09, 31.53, 29.34, 28.99, 28.41, 24.80, 22.46, 13.99, 11.35, -1.46; MS m/z 282 (M⁺ + 2; 0.11), 280 (M⁺; 0.19), 73 (100). HR-MS, Found: m/z 172.0991 (M⁺ - Cl – SiMe₃). Calcd for C₁₀H₁₇Cl: M – Cl – SiMe₃, 172.1017.

References

- 1) G. Stork and T. L. MacDonald, J. Am. Chem. Soc., 97, 1264 (1975).
- 2) P. Amice, L. Blanco, and J. M. Conia, *Synthesis*, **1976**, 196.
- 3) E. Wenkert, T. S. Arrhenius, B. Bookser, M. Guo, and P. Mancini, *J. Org. Chem.*, **55**, 1185 (1990).
- 4) W. E. Parham, R. W. Soeder, J. R. Throckmorton, K. Kuncl, and R. M. Dodson, *J. Am. Chem. Soc.*, **87**, 321 (1965).
 - 5) L. Skattebol, J. Org. Chem., 31, 1554 (1966).
- A. J. Birch and G. S. R. S. Rao, Tetrahedron, Suppl., 7, 391 (1966).
 - 7) R. C. DeSelms, Tetrahedron Lett., 1966, 1965.
- 8) G. Stork, M. Nussim, and B. August, *Tetrahedron*, Suppl., 8, Part 1, 105 (1966).
- 9) M. Ohno, Tetrahedron Lett., 1963, 1753.
- 10) J. Wolinsky, D. Chan, and R. Novak, *Chem. Ind.* (London), **1965**, 720.
- 11) T. Mukaiyama, M. Shiono, K. Watanabe, and M. Onaka, Chem. Lett., 1975, 711.
- 12) W. R. Dolbier, Jr., and C. R. Burkholder, *J. Org. Chem.*, **55**, 589 (1990).
- 13) E. Moflier, A. Mortreux, F. Petit, and S. Lecolier, J. Chem. Soc., Chem. Commun., 1992, 439.
- 14) E. Nakamura, H. Oshino, and I. Kuwajima, *J. Am. Chem. Soc.*, **108**, 3745 (1986).
- 15) H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, *J. Org. Chem.*, **34**, 2324 (1969).
- 16) C. Ainsworth, F. Chen, and Y.-N. Kuo, *J. Organomet. Chem.*, **46**, 59 (1972).
- 17) I. Fleming and I. Paterson, Synthesis, 1979, 446.